Chapter 1

Number of cells: 3 × 10 13 ; 3 × 10 13 ; length of a cell: 8 × 10 −6 8 × 10 −6 m; total length: 2.4 × 10 8 2.4 × 10 8 m or 240 , 000 , 000 240 , 000 , 000 m.

1.3 Radicals and Rational Exponents

  1. ⓐ 15 15
  2. ⓑ 3 3
  3. ⓒ 4 4
  4. ⓓ 17 17

5 | x | | y | 2 y z . 5 | x | | y | 2 y z . Notice the absolute value signs around x and y? That’s because their value must be positive!

x 2 3 y 2 . x 2 3 y 2 . We do not need the absolute value signs for y 2 y 2 because that term will always be nonnegative.

b 4 3 a b b 4 3 a b

  1. ⓐ −6 −6
  2. ⓑ 6 6
  3. ⓒ 88 9 3 88 9 3

( 9 ) 5 = 3 5 = 243 ( 9 ) 5 = 3 5 = 243

x ( 5 y ) 9 2 x ( 5 y ) 9 2

28 x 23 15 28 x 23 15

1.4 Polynomials

The degree is 6, the leading term is − x 6 , − x 6 , and the leading coefficient is −1. −1.

2 x 3 + 7 x 2 −4 x −3 2 x 3 + 7 x 2 −4 x −3

−11 x 3 − x 2 + 7 x −9 −11 x 3 − x 2 + 7 x −9

3 x 4 −10 x 3 −8 x 2 + 21 x + 14 3 x 4 −10 x 3 −8 x 2 + 21 x + 14

3 x 2 + 16 x −35 3 x 2 + 16 x −35

16 x 2 −8 x + 1 16 x 2 −8 x + 1

4 x 2 −49 4 x 2 −49

6 x 2 + 21 x y −29 x −7 y + 9 6 x 2 + 21 x y −29 x −7 y + 9

1.5 Factoring Polynomials

( b 2 − a ) ( x + 6 ) ( b 2 − a ) ( x + 6 )

( x −6 ) ( x −1 ) ( x −6 ) ( x −1 )

  1. ⓐ ( 2 x + 3 ) ( x + 3 ) ( 2 x + 3 ) ( x + 3 )
  2. ⓑ ( 3 x −1 ) ( 2 x + 1 ) ( 3 x −1 ) ( 2 x + 1 )

( 7 x −1 ) 2 ( 7 x −1 ) 2

( 9 y + 10 ) ( 9 y − 10 ) ( 9 y + 10 ) ( 9 y − 10 )

( 6 a + b ) ( 36 a 2 −6 a b + b 2 ) ( 6 a + b ) ( 36 a 2 −6 a b + b 2 )

( 10 x − 1 ) ( 100 x 2 + 10 x + 1 ) ( 10 x − 1 ) ( 100 x 2 + 10 x + 1 )

( 5 a −1 ) − 1 4 ( 17 a −2 ) ( 5 a −1 ) − 1 4 ( 17 a −2 )

1.6 Rational Expressions

( x + 5 ) ( x + 6 ) ( x + 2 ) ( x + 4 ) ( x + 5 ) ( x + 6 ) ( x + 2 ) ( x + 4 )

2 ( x −7 ) ( x + 5 ) ( x −3 ) 2 ( x −7 ) ( x + 5 ) ( x −3 )

x 2 − y 2 x y 2 x 2 − y 2 x y 2

1.1 Section Exercises

irrational number. The square root of two does not terminate, and it does not repeat a pattern. It cannot be written as a quotient of two integers, so it is irrational.

The Associative Properties state that the sum or product of multiple numbers can be grouped differently without affecting the result. This is because the same operation is performed (either addition or subtraction), so the terms can be re-ordered.

−14 y − 11 −14 y − 11

43 z − 3 43 z − 3

9 y + 45 9 y + 45

1 2 ( 40 − 10 ) + 5 1 2 ( 40 − 10 ) + 5

g + 400 − 2 ( 600 ) = 1200 g + 400 − 2 ( 600 ) = 1200

inverse property of addition

1.2 Section Exercises

No, the two expressions are not the same. An exponent tells how many times you multiply the base. So 2 3 2 3 is the same as 2 × 2 × 2 , 2 × 2 × 2 , which is 8. 3 2 3 2 is the same as 3 × 3 , 3 × 3 , which is 9.

It is a method of writing very small and very large numbers.

3.14 × 10 − 5 3.14 × 10 − 5

b 6 c 8 b 6 c 8

a b 2 d 3 a b 2 d 3

q 5 p 6 q 5 p 6

y 21 x 14 y 21 x 14

c 3 b 9 c 3 b 9

y 81 z 6 y 81 z 6

1.0995 × 10 12 1.0995 × 10 12

12,230,590,464 m 66 m 66

a 14 1296 a 14 1296

n a 9 c n a 9 c

1 a 6 b 6 c 6 1 a 6 b 6 c 6

1.3 Section Exercises

When there is no index, it is assumed to be 2 or the square root. The expression would only be equal to the radicand if the index were 1.

The principal square root is the nonnegative root of the number.

6 10 19 6 10 19

− 1 + 17 2 − 1 + 17 2

17 m 2 m 17 m 2 m

5 y 4 2 5 y 4 2

4 7 d 7 d 4 7 d 7 d

2 2 + 2 6 x 1 −3 x 2 2 + 2 6 x 1 −3 x

3 x − 3 x 2 3 x − 3 x 2

5 n 5 5 5 n 5 5

9 m 19 m 9 m 19 m

3 2 x 2 4 2 3 2 x 2 4 2

6 z 2 3 6 z 2 3

−5 2 −6 7 −5 2 −6 7

m n c a 9 c m n m n c a 9 c m n

2 2 x + 2 4 2 2 x + 2 4

1.4 Section Exercises

The statement is true. In standard form, the polynomial with the highest value exponent is placed first and is the leading term. The degree of a polynomial is the value of the highest exponent, which in standard form is also the exponent of the leading term.

Use the distributive property, multiply, combine like terms, and simplify.

4 x 2 + 3 x + 19 4 x 2 + 3 x + 19

3 w 2 + 30 w + 21 3 w 2 + 30 w + 21

11 b 4 −9 b 3 + 12 b 2 −7 b + 8 11 b 4 −9 b 3 + 12 b 2 −7 b + 8

24 x 2 −4 x −8 24 x 2 −4 x −8

24 b 4 −48 b 2 + 24 24 b 4 −48 b 2 + 24

99 v 2 −202 v + 99 99 v 2 −202 v + 99

8 n 3 −4 n 2 + 72 n −36 8 n 3 −4 n 2 + 72 n −36

9 y 2 −42 y + 49 9 y 2 −42 y + 49

16 p 2 + 72 p + 81 16 p 2 + 72 p + 81

9 y 2 −36 y + 36 9 y 2 −36 y + 36

16 c 2 −1 16 c 2 −1

225 n 2 −36 225 n 2 −36

−16 m 2 + 16 −16 m 2 + 16

121 q 2 −100 121 q 2 −100

16 t 4 + 4 t 3 −32 t 2 − t + 7 16 t 4 + 4 t 3 −32 t 2 − t + 7

y 3 −6 y 2 − y + 18 y 3 −6 y 2 − y + 18

3 p 3 − p 2 −12 p + 10 3 p 3 − p 2 −12 p + 10

a 2 − b 2 a 2 − b 2

16 t 2 −40 t u + 25 u 2 16 t 2 −40 t u + 25 u 2

4 t 2 + x 2 + 4 t −5 t x − x 4 t 2 + x 2 + 4 t −5 t x − x

24 r 2 + 22 r d −7 d 2 24 r 2 + 22 r d −7 d 2

32 x 2 −4 x −3 32 x 2 −4 x −3 m 2

32 t 3 − 100 t 2 + 40 t + 38 32 t 3 − 100 t 2 + 40 t + 38

a 4 + 4 a 3 c −16 a c 3 −16 c 4 a 4 + 4 a 3 c −16 a c 3 −16 c 4

1.5 Section Exercises

The terms of a polynomial do not have to have a common factor for the entire polynomial to be factorable. For example, 4 x 2 4 x 2 and −9 y 2 −9 y 2 don’t have a common factor, but the whole polynomial is still factorable: 4 x 2 −9 y 2 = ( 2 x + 3 y ) ( 2 x −3 y ) . 4 x 2 −9 y 2 = ( 2 x + 3 y ) ( 2 x −3 y ) .

Divide the x x term into the sum of two terms, factor each portion of the expression separately, and then factor out the GCF of the entire expression.

( 2 a −3 ) ( a + 6 ) ( 2 a −3 ) ( a + 6 )

( 3 n −11 ) ( 2 n + 1 ) ( 3 n −11 ) ( 2 n + 1 )

( p + 1 ) ( 2 p −7 ) ( p + 1 ) ( 2 p −7 )

( 5 h + 3 ) ( 2 h −3 ) ( 5 h + 3 ) ( 2 h −3 )

( 9 d −1 ) ( d −8 ) ( 9 d −1 ) ( d −8 )

( 12 t + 13 ) ( t −1 ) ( 12 t + 13 ) ( t −1 )

( 4 x + 10 ) ( 4 x − 10 ) ( 4 x + 10 ) ( 4 x − 10 )

( 11 p + 13 ) ( 11 p − 13 ) ( 11 p + 13 ) ( 11 p − 13 )

( 19 d + 9 ) ( 19 d − 9 ) ( 19 d + 9 ) ( 19 d − 9 )

( 12 b + 5 c ) ( 12 b − 5 c ) ( 12 b + 5 c ) ( 12 b − 5 c )

( 7 n + 12 ) 2 ( 7 n + 12 ) 2

( 15 y + 4 ) 2 ( 15 y + 4 ) 2

( 5 p − 12 ) 2 ( 5 p − 12 ) 2

( x + 6 ) ( x 2 − 6 x + 36 ) ( x + 6 ) ( x 2 − 6 x + 36 )

( 5 a + 7 ) ( 25 a 2 − 35 a + 49 ) ( 5 a + 7 ) ( 25 a 2 − 35 a + 49 )

( 4 x − 5 ) ( 16 x 2 + 20 x + 25 ) ( 4 x − 5 ) ( 16 x 2 + 20 x + 25 )

( 5 r + 12 s ) ( 25 r 2 − 60 r s + 144 s 2 ) ( 5 r + 12 s ) ( 25 r 2 − 60 r s + 144 s 2 )

( 2 c + 3 ) − 1 4 ( −7 c − 15 ) ( 2 c + 3 ) − 1 4 ( −7 c − 15 )

( x + 2 ) − 2 5 ( 19 x + 10 ) ( x + 2 ) − 2 5 ( 19 x + 10 )

( 2 z − 9 ) − 3 2 ( 27 z − 99 ) ( 2 z − 9 ) − 3 2 ( 27 z − 99 )

( 14 x −3 ) ( 7 x + 9 ) ( 14 x −3 ) ( 7 x + 9 )

( 3 x + 5 ) ( 3 x −5 ) ( 3 x + 5 ) ( 3 x −5 )

( 2 x + 5 ) 2 ( 2 x − 5 ) 2 ( 2 x + 5 ) 2 ( 2 x − 5 ) 2

( 4 z 2 + 49 a 2 ) ( 2 z + 7 a ) ( 2 z − 7 a ) ( 4 z 2 + 49 a 2 ) ( 2 z + 7 a ) ( 2 z − 7 a )

1 ( 4 x + 9 ) ( 4 x −9 ) ( 2 x + 3 ) 1 ( 4 x + 9 ) ( 4 x −9 ) ( 2 x + 3 )

1.6 Section Exercises

You can factor the numerator and denominator to see if any of the terms can cancel one another out.

True. Multiplication and division do not require finding the LCD because the denominators can be combined through those operations, whereas addition and subtraction require like terms.

y + 5 y + 6 y + 5 y + 6

x + 4 2 x + 2 x + 4 2 x + 2

a + 3 a − 3 a + 3 a − 3

3 n − 8 7 n − 3 3 n − 8 7 n − 3

c − 6 c + 6 c − 6 c + 6

d 2 − 25 25 d 2 − 1 d 2 − 25 25 d 2 − 1

t + 5 t + 3 t + 5 t + 3

6 x − 5 6 x + 5 6 x − 5 6 x + 5

p + 6 4 p + 3 p + 6 4 p + 3

2 d + 9 d + 11 2 d + 9 d + 11

12 b + 5 3 b −1 12 b + 5 3 b −1

4 y −1 y + 4 4 y −1 y + 4

10 x + 4 y x y 10 x + 4 y x y

9 a − 7 a 2 − 2 a − 3 9 a − 7 a 2 − 2 a − 3

2 y 2 − y + 9 y 2 − y − 2 2 y 2 − y + 9 y 2 − y − 2

5 z 2 + z + 5 z 2 − z − 2 5 z 2 + z + 5 z 2 − z − 2

x + 2 x y + y x + x y + y + 1 x + 2 x y + y x + x y + y + 1

2 b + 7 a a b 2 2 b + 7 a a b 2

18 + a b 4 b 18 + a b 4 b

3 c 2 + 3 c − 2 2 c 2 + 5 c + 2 3 c 2 + 3 c − 2 2 c 2 + 5 c + 2

15 x + 7 x −1 15 x + 7 x −1

x + 9 x −9 x + 9 x −9

Review Exercises

x 3 32 y 3 x 3 32 y 3

1.634 × 10 7 1.634 × 10 7

3 x 3 + 4 x 2 + 6 3 x 3 + 4 x 2 + 6

5 x 2 − x + 3 5 x 2 − x + 3

k 2 − 3 k − 18 k 2 − 3 k − 18

x 3 + x 2 + x + 1 x 3 + x 2 + x + 1

3 a 2 + 5 a b − 2 b 2 3 a 2 + 5 a b − 2 b 2

( 4 a − 3 ) ( 2 a + 9 ) ( 4 a − 3 ) ( 2 a + 9 )

( x + 5 ) 2 ( x + 5 ) 2

( 2 h − 3 k ) 2 ( 2 h − 3 k ) 2

( p + 6 ) ( p 2 − 6 p + 36 ) ( p + 6 ) ( p 2 − 6 p + 36 )

( 4 q − 3 p ) ( 16 q 2 + 12 p q + 9 p 2 ) ( 4 q − 3 p ) ( 16 q 2 + 12 p q + 9 p 2 )

( p + 3 ) 1 3 ( −5 p − 24 ) ( p + 3 ) 1 3 ( −5 p − 24 )

x + 3 x − 4 x + 3 x − 4

m + 2 m − 3 m + 2 m − 3

6 x + 10 y x y 6 x + 10 y x y

Practice Test

13 q 3 − 4 q 2 − 5 q 13 q 3 − 4 q 2 − 5 q

n 3 − 6 n 2 + 12 n − 8 n 3 − 6 n 2 + 12 n − 8

( 4 x + 9 ) ( 4 x − 9 ) ( 4 x + 9 ) ( 4 x − 9 )

( 3 c − 11 ) ( 9 c 2 + 33 c + 121 ) ( 3 c − 11 ) ( 9 c 2 + 33 c + 121 )

4 z − 3 2 z − 1 4 z − 3 2 z − 1

3 a + 2 b 3 b 3 a + 2 b 3 b

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Access for free at https://openstax.org/books/college-algebra/pages/1-introduction-to-prerequisites
Access for free at https://openstax.org/books/college-algebra/pages/1-introduction-to-prerequisites