Number of cells: 3 × 10 13 ; 3 × 10 13 ; length of a cell: 8 × 10 −6 8 × 10 −6 m; total length: 2.4 × 10 8 2.4 × 10 8 m or 240 , 000 , 000 240 , 000 , 000 m.
5 | x | | y | 2 y z . 5 | x | | y | 2 y z . Notice the absolute value signs around x and y? That’s because their value must be positive!
x 2 3 y 2 . x 2 3 y 2 . We do not need the absolute value signs for y 2 y 2 because that term will always be nonnegative.
b 4 3 a b b 4 3 a b
( 9 ) 5 = 3 5 = 243 ( 9 ) 5 = 3 5 = 243
x ( 5 y ) 9 2 x ( 5 y ) 9 2
28 x 23 15 28 x 23 15
The degree is 6, the leading term is − x 6 , − x 6 , and the leading coefficient is −1. −1.
2 x 3 + 7 x 2 −4 x −3 2 x 3 + 7 x 2 −4 x −3
−11 x 3 − x 2 + 7 x −9 −11 x 3 − x 2 + 7 x −9
3 x 4 −10 x 3 −8 x 2 + 21 x + 14 3 x 4 −10 x 3 −8 x 2 + 21 x + 14
3 x 2 + 16 x −35 3 x 2 + 16 x −35
16 x 2 −8 x + 1 16 x 2 −8 x + 1
4 x 2 −49 4 x 2 −49
6 x 2 + 21 x y −29 x −7 y + 9 6 x 2 + 21 x y −29 x −7 y + 9
( b 2 − a ) ( x + 6 ) ( b 2 − a ) ( x + 6 )
( x −6 ) ( x −1 ) ( x −6 ) ( x −1 )
( 7 x −1 ) 2 ( 7 x −1 ) 2
( 9 y + 10 ) ( 9 y − 10 ) ( 9 y + 10 ) ( 9 y − 10 )
( 6 a + b ) ( 36 a 2 −6 a b + b 2 ) ( 6 a + b ) ( 36 a 2 −6 a b + b 2 )
( 10 x − 1 ) ( 100 x 2 + 10 x + 1 ) ( 10 x − 1 ) ( 100 x 2 + 10 x + 1 )
( 5 a −1 ) − 1 4 ( 17 a −2 ) ( 5 a −1 ) − 1 4 ( 17 a −2 )
( x + 5 ) ( x + 6 ) ( x + 2 ) ( x + 4 ) ( x + 5 ) ( x + 6 ) ( x + 2 ) ( x + 4 )
2 ( x −7 ) ( x + 5 ) ( x −3 ) 2 ( x −7 ) ( x + 5 ) ( x −3 )
x 2 − y 2 x y 2 x 2 − y 2 x y 2
irrational number. The square root of two does not terminate, and it does not repeat a pattern. It cannot be written as a quotient of two integers, so it is irrational.
The Associative Properties state that the sum or product of multiple numbers can be grouped differently without affecting the result. This is because the same operation is performed (either addition or subtraction), so the terms can be re-ordered.
−14 y − 11 −14 y − 11
43 z − 3 43 z − 3
9 y + 45 9 y + 45
1 2 ( 40 − 10 ) + 5 1 2 ( 40 − 10 ) + 5
g + 400 − 2 ( 600 ) = 1200 g + 400 − 2 ( 600 ) = 1200
inverse property of addition
No, the two expressions are not the same. An exponent tells how many times you multiply the base. So 2 3 2 3 is the same as 2 × 2 × 2 , 2 × 2 × 2 , which is 8. 3 2 3 2 is the same as 3 × 3 , 3 × 3 , which is 9.
It is a method of writing very small and very large numbers.
3.14 × 10 − 5 3.14 × 10 − 5
b 6 c 8 b 6 c 8
a b 2 d 3 a b 2 d 3
q 5 p 6 q 5 p 6
y 21 x 14 y 21 x 14
c 3 b 9 c 3 b 9
y 81 z 6 y 81 z 6
1.0995 × 10 12 1.0995 × 10 12
12,230,590,464 m 66 m 66
a 14 1296 a 14 1296
n a 9 c n a 9 c
1 a 6 b 6 c 6 1 a 6 b 6 c 6
When there is no index, it is assumed to be 2 or the square root. The expression would only be equal to the radicand if the index were 1.
The principal square root is the nonnegative root of the number.
6 10 19 6 10 19
− 1 + 17 2 − 1 + 17 2
17 m 2 m 17 m 2 m
5 y 4 2 5 y 4 2
4 7 d 7 d 4 7 d 7 d
2 2 + 2 6 x 1 −3 x 2 2 + 2 6 x 1 −3 x
3 x − 3 x 2 3 x − 3 x 2
5 n 5 5 5 n 5 5
9 m 19 m 9 m 19 m
3 2 x 2 4 2 3 2 x 2 4 2
6 z 2 3 6 z 2 3
−5 2 −6 7 −5 2 −6 7
m n c a 9 c m n m n c a 9 c m n
2 2 x + 2 4 2 2 x + 2 4
The statement is true. In standard form, the polynomial with the highest value exponent is placed first and is the leading term. The degree of a polynomial is the value of the highest exponent, which in standard form is also the exponent of the leading term.
Use the distributive property, multiply, combine like terms, and simplify.
4 x 2 + 3 x + 19 4 x 2 + 3 x + 19
3 w 2 + 30 w + 21 3 w 2 + 30 w + 21
11 b 4 −9 b 3 + 12 b 2 −7 b + 8 11 b 4 −9 b 3 + 12 b 2 −7 b + 8
24 x 2 −4 x −8 24 x 2 −4 x −8
24 b 4 −48 b 2 + 24 24 b 4 −48 b 2 + 24
99 v 2 −202 v + 99 99 v 2 −202 v + 99
8 n 3 −4 n 2 + 72 n −36 8 n 3 −4 n 2 + 72 n −36
9 y 2 −42 y + 49 9 y 2 −42 y + 49
16 p 2 + 72 p + 81 16 p 2 + 72 p + 81
9 y 2 −36 y + 36 9 y 2 −36 y + 36
16 c 2 −1 16 c 2 −1
225 n 2 −36 225 n 2 −36
−16 m 2 + 16 −16 m 2 + 16
121 q 2 −100 121 q 2 −100
16 t 4 + 4 t 3 −32 t 2 − t + 7 16 t 4 + 4 t 3 −32 t 2 − t + 7
y 3 −6 y 2 − y + 18 y 3 −6 y 2 − y + 18
3 p 3 − p 2 −12 p + 10 3 p 3 − p 2 −12 p + 10
a 2 − b 2 a 2 − b 2
16 t 2 −40 t u + 25 u 2 16 t 2 −40 t u + 25 u 2
4 t 2 + x 2 + 4 t −5 t x − x 4 t 2 + x 2 + 4 t −5 t x − x
24 r 2 + 22 r d −7 d 2 24 r 2 + 22 r d −7 d 2
32 x 2 −4 x −3 32 x 2 −4 x −3 m 2
32 t 3 − 100 t 2 + 40 t + 38 32 t 3 − 100 t 2 + 40 t + 38
a 4 + 4 a 3 c −16 a c 3 −16 c 4 a 4 + 4 a 3 c −16 a c 3 −16 c 4
The terms of a polynomial do not have to have a common factor for the entire polynomial to be factorable. For example, 4 x 2 4 x 2 and −9 y 2 −9 y 2 don’t have a common factor, but the whole polynomial is still factorable: 4 x 2 −9 y 2 = ( 2 x + 3 y ) ( 2 x −3 y ) . 4 x 2 −9 y 2 = ( 2 x + 3 y ) ( 2 x −3 y ) .
Divide the x x term into the sum of two terms, factor each portion of the expression separately, and then factor out the GCF of the entire expression.
( 2 a −3 ) ( a + 6 ) ( 2 a −3 ) ( a + 6 )
( 3 n −11 ) ( 2 n + 1 ) ( 3 n −11 ) ( 2 n + 1 )
( p + 1 ) ( 2 p −7 ) ( p + 1 ) ( 2 p −7 )
( 5 h + 3 ) ( 2 h −3 ) ( 5 h + 3 ) ( 2 h −3 )
( 9 d −1 ) ( d −8 ) ( 9 d −1 ) ( d −8 )
( 12 t + 13 ) ( t −1 ) ( 12 t + 13 ) ( t −1 )
( 4 x + 10 ) ( 4 x − 10 ) ( 4 x + 10 ) ( 4 x − 10 )
( 11 p + 13 ) ( 11 p − 13 ) ( 11 p + 13 ) ( 11 p − 13 )
( 19 d + 9 ) ( 19 d − 9 ) ( 19 d + 9 ) ( 19 d − 9 )
( 12 b + 5 c ) ( 12 b − 5 c ) ( 12 b + 5 c ) ( 12 b − 5 c )
( 7 n + 12 ) 2 ( 7 n + 12 ) 2
( 15 y + 4 ) 2 ( 15 y + 4 ) 2
( 5 p − 12 ) 2 ( 5 p − 12 ) 2
( x + 6 ) ( x 2 − 6 x + 36 ) ( x + 6 ) ( x 2 − 6 x + 36 )
( 5 a + 7 ) ( 25 a 2 − 35 a + 49 ) ( 5 a + 7 ) ( 25 a 2 − 35 a + 49 )
( 4 x − 5 ) ( 16 x 2 + 20 x + 25 ) ( 4 x − 5 ) ( 16 x 2 + 20 x + 25 )
( 5 r + 12 s ) ( 25 r 2 − 60 r s + 144 s 2 ) ( 5 r + 12 s ) ( 25 r 2 − 60 r s + 144 s 2 )
( 2 c + 3 ) − 1 4 ( −7 c − 15 ) ( 2 c + 3 ) − 1 4 ( −7 c − 15 )
( x + 2 ) − 2 5 ( 19 x + 10 ) ( x + 2 ) − 2 5 ( 19 x + 10 )
( 2 z − 9 ) − 3 2 ( 27 z − 99 ) ( 2 z − 9 ) − 3 2 ( 27 z − 99 )
( 14 x −3 ) ( 7 x + 9 ) ( 14 x −3 ) ( 7 x + 9 )
( 3 x + 5 ) ( 3 x −5 ) ( 3 x + 5 ) ( 3 x −5 )
( 2 x + 5 ) 2 ( 2 x − 5 ) 2 ( 2 x + 5 ) 2 ( 2 x − 5 ) 2
( 4 z 2 + 49 a 2 ) ( 2 z + 7 a ) ( 2 z − 7 a ) ( 4 z 2 + 49 a 2 ) ( 2 z + 7 a ) ( 2 z − 7 a )
1 ( 4 x + 9 ) ( 4 x −9 ) ( 2 x + 3 ) 1 ( 4 x + 9 ) ( 4 x −9 ) ( 2 x + 3 )
You can factor the numerator and denominator to see if any of the terms can cancel one another out.
True. Multiplication and division do not require finding the LCD because the denominators can be combined through those operations, whereas addition and subtraction require like terms.
y + 5 y + 6 y + 5 y + 6
x + 4 2 x + 2 x + 4 2 x + 2
a + 3 a − 3 a + 3 a − 3
3 n − 8 7 n − 3 3 n − 8 7 n − 3
c − 6 c + 6 c − 6 c + 6
d 2 − 25 25 d 2 − 1 d 2 − 25 25 d 2 − 1
t + 5 t + 3 t + 5 t + 3
6 x − 5 6 x + 5 6 x − 5 6 x + 5
p + 6 4 p + 3 p + 6 4 p + 3
2 d + 9 d + 11 2 d + 9 d + 11
12 b + 5 3 b −1 12 b + 5 3 b −1
4 y −1 y + 4 4 y −1 y + 4
10 x + 4 y x y 10 x + 4 y x y
9 a − 7 a 2 − 2 a − 3 9 a − 7 a 2 − 2 a − 3
2 y 2 − y + 9 y 2 − y − 2 2 y 2 − y + 9 y 2 − y − 2
5 z 2 + z + 5 z 2 − z − 2 5 z 2 + z + 5 z 2 − z − 2
x + 2 x y + y x + x y + y + 1 x + 2 x y + y x + x y + y + 1
2 b + 7 a a b 2 2 b + 7 a a b 2
18 + a b 4 b 18 + a b 4 b
3 c 2 + 3 c − 2 2 c 2 + 5 c + 2 3 c 2 + 3 c − 2 2 c 2 + 5 c + 2
15 x + 7 x −1 15 x + 7 x −1
x + 9 x −9 x + 9 x −9
x 3 32 y 3 x 3 32 y 3
1.634 × 10 7 1.634 × 10 7
3 x 3 + 4 x 2 + 6 3 x 3 + 4 x 2 + 6
k 2 − 3 k − 18 k 2 − 3 k − 18
x 3 + x 2 + x + 1 x 3 + x 2 + x + 1
3 a 2 + 5 a b − 2 b 2 3 a 2 + 5 a b − 2 b 2
( 4 a − 3 ) ( 2 a + 9 ) ( 4 a − 3 ) ( 2 a + 9 )
( x + 5 ) 2 ( x + 5 ) 2
( 2 h − 3 k ) 2 ( 2 h − 3 k ) 2
( p + 6 ) ( p 2 − 6 p + 36 ) ( p + 6 ) ( p 2 − 6 p + 36 )
( 4 q − 3 p ) ( 16 q 2 + 12 p q + 9 p 2 ) ( 4 q − 3 p ) ( 16 q 2 + 12 p q + 9 p 2 )
( p + 3 ) 1 3 ( −5 p − 24 ) ( p + 3 ) 1 3 ( −5 p − 24 )
x + 3 x − 4 x + 3 x − 4
m + 2 m − 3 m + 2 m − 3
6 x + 10 y x y 6 x + 10 y x y
13 q 3 − 4 q 2 − 5 q 13 q 3 − 4 q 2 − 5 q
n 3 − 6 n 2 + 12 n − 8 n 3 − 6 n 2 + 12 n − 8
( 4 x + 9 ) ( 4 x − 9 ) ( 4 x + 9 ) ( 4 x − 9 )
( 3 c − 11 ) ( 9 c 2 + 33 c + 121 ) ( 3 c − 11 ) ( 9 c 2 + 33 c + 121 )
4 z − 3 2 z − 1 4 z − 3 2 z − 1
3 a + 2 b 3 b 3 a + 2 b 3 b
This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.
Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.
Access for free at https://openstax.org/books/college-algebra/pages/1-introduction-to-prerequisites
Access for free at https://openstax.org/books/college-algebra/pages/1-introduction-to-prerequisites
© Dec 8, 2021 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.
OpenStax is part of Rice University, which is a 501(c)(3) nonprofit. Give today and help us reach more students.